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Abstract
In this paper, we consider the one-dimensional anharmonic oscillator, which
represents well the anharmonic vibrations in diatomic molecules. For the
description of the associate potential we use the Morse potential, which gives
a good approximation of the experimentally observed vibrational modes of
molecules and hence contributes to the realistic description of the spectrum of
diatomic molecules. The generalized and Gaussian coherent states are thus
constructed and compared in terms of the localization of the particle in those
states. We apply these results to the example of the sodium chloride molecule,
1H35Cl.

PACS numbers: 03.65.−w, 02.20.Sv

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In quantum mechanics, the one-dimensional harmonic oscillator is described by a quadratic
potential. It is a well-known problem and the solution of the corresponding Schrödinger
equation can be found in all textbooks on quantum mechanics [1, 2]. It represents a case of
an exactly solvable quantum system. However, for most applications in physics, chemistry,
biology and material science, a more realistic system is required, such as the anharmonic
oscillator, as it describes more accurately, for example, atomic and molecular vibrations [3].

Coherent states have been first introduced as some superposition of energy eigenstates of
the quantum harmonic oscillator whose dynamics closely resembles the behaviour of the classic
harmonic oscillator. Such definition has been generalized to include other quantum systems
with the idea of preserving some of the mathematical and physical properties of the original
coherent states [4–8]. The so-called ‘generalized coherent states’ [4] have been constructed
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as eigenstates of an annihilation operator [6] both in the case of quantum systems with infinite
and finite spectra (see [9] and references therein). On the other hand, the ‘Gaussian coherent
states’ [10], defined originally as an approximation of the harmonic oscillator coherent states,
have been studied in relation with a good localization with respect to the position of the particle
in the case of the square well potential. The generalized and Gaussian coherent states of the
same potential have been compared in a recent approach when the energy spectrum may be
degenerated [11].

A significant effort has also been made in the last three decades to construct coherent
states of general anharmonic potentials [12–14]. On one hand, the interest has been generated
by the increasing importance of applications of coherent states to descriptions of physical
systems, such as atomic and molecular vibrations, quantum computation and quantum control
[15]. On the other hand, the anharmonic potentials, and in particular the Morse potential,
represent well the anharmonic behaviour of vibrations in diatomic and complex molecules
[13, 16, 17].

In this paper, we consider the one-dimensional anharmonic oscillator, which will be
described by using the Morse potential [18]. Indeed, it gives a good approximation of the
experimentally observed vibrational modes of molecules and hence contributes to a realistic
description of the spectrum of diatomic molecules. In addition, the Morse potential represents
a good toy model for studying quantum control [19], as it gives a finite number of bound states
(unlike the harmonic oscillator, which gives an infinite number of states) and thus the design
of control is limited to a finite regime.

The Morse potential has been studied both in terms of the SO(2, 1) (see, for example
[20–25]) and SU(2) groups [26, 27]. The latter description has been exploited in the
development of the algebraic model of molecular vibrations in diatomic and polyatomic
molecules that incorporates anharmonic effects at the local mode level [26–36], while the
former could be relevant for the algebraic determination of the scattering matrices. In SO(2, 1),
the Morse Hamiltonian is associated with the Casimir operator in [28–31]. In [24, 25],
the Hamiltonians of both, the Morse potential and the modified Pöschl–Teller potential, are
obtained and the ladder operators are derived from SO(2, 1). In the case of SU(2), the Morse
Hamiltonian is a simple function of the generators [26–32]. The fundamental difference
between these two treatments is that SO(2, 1) is a non-compact group which involves either
unitary continuous representations or infinite-dimensional discrete representations. Thus, the
raising and lowering operators of SO(2, 1) are associated with step variations of the potential
depth, keeping a fixed energy [22], while SU(2) formulation involves the description of the
bound states which includes only a finite number of states.

In this work, we extend the recent results [11] on generalized and Gaussian coherent states
to the case of a quantum system with a finite discrete energy spectrum. We consider different
ladder operators and verify some algebra structures or factorization of the Hamiltonian. The
definition of generalized coherent states, as some finite superpositions of energy eigenstates, is
closely related to the infinite case. We compare the behaviour of these states with the Gaussian
ones that are defined independently of any algebra structure. In particular, we show that the
generalized and Gaussian coherent states for the Morse potential exhibit a similar behaviour
for convenient values of the coherent states parameters. Moreover, such states are minimizing
the Heisenberg uncertainty relation in the position and momentum, and they also evolve in
time as coherent states.

In section 2, we present the basic concepts of the model. Different sets of the ladder
operators are given in section 3. We describe the generalized and Gaussian coherent states
of one-dimensional quantum systems in section 4. An application is given with the sodium
chloride molecule, 1H35Cl, in section 5, while conclusions are presented in section 6.
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Figure 1. Graphs of V1 and VOH.

2. The model

The Morse potential in one dimension can be described by a number of equivalent or nearly
equivalent forms. In this paper, we shall use the description

VM(x) = V0(e
−2βx − 2 e−βx), (1)

where x is the space variable, which in the context of diatomic molecule represents the
displacement of the two atoms from their equilibrium positions, V0 is a scaling energy constant
representing the depth of the potential well at equilibrium x = 0 and β is the parameter of the
model, related to the characteristics of the Morse well, such as its depth and width. Another
possible choice of the potential is

V1 = V0(1 − e−βx)2 = VM + V0. (2)

Let us mention that the harmonic oscillator limit VOH = 1
2kx2 is obtained when we consider

the potential V1 with V0 = k
2β2 and take the limit βx → 0. The well-known graphs of V1 and

VOH, with k
β2 = 2, are shown in figure 1.

Let us consider the one-dimensional quantum oscillator model with the Hamiltonian H:

Hψ(x) =
(

− h̄2

2mr

d2

dx2
+ VM(x)

)
ψ(x) = Eψ(x), (3)

where h̄ is the Plank constant and mr is the reduced mass of the oscillator composed of two
particles of masses m1 and m2,

1

mr

= 1

m1
+

1

m2
. (4)

The first term of (3) gives the kinetic energy and the second term gives the potential energy of
the oscillator described by the Morse potential (1).

The eigenvalues and eigenfunctions of this model are well known (see, for example [13]).
The energy eigenvalues are

En = − h̄2

2mr

β2s2, (5)

with

s = εn = ν − 1

2
− n, (6)

3
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and n takes a finite number of values, i.e. {n = 0, 1, 2, . . . , nmax − 1}, nmax = [p], with [p]
the integer part of p = ν−1

2 . We thus have

En+1 − En = h̄2

2mr

β2(ν − 2(n + 1)), (7)

showing that consecutive energies are not equally spaced due to the presence of the term
depending on n, in contrast to the case of the harmonic oscillator. For later use, we also
introduce the difference

e(n) = (
ε2
n − ε2

0

) = − 2mr

h̄2β2
(En − E0) = n(n − ν + 1), (8)

which corresponds to shifted energies such that e(0) = 0. The energy eigenfunctions, for the
discrete spectrum, are given in terms of associated Laguerre functions, denoted by L2s

n , as

ψν
n (x) = Nn e− y

2 ysL2s
n (y), (9)

where Nn is a normalization factor to be determined. The new variable y is used instead of x
and takes the form

y = ν e−βx, ν =
√

8mrV0

β2h̄2 . (10)

Thus, the constant V0 can be written as

V0 = β2h̄2

2mr

(ν

2

)2
. (11)

The parameters of the Morse potential can be expressed in terms of the Dunham constants, well
known in molecular spectroscopy, the values of which are listed for all diatomic molecules in
[3].

In order to get the good normalization factor, we use the orthogonality relation of the
associated Laguerre functions which, in terms of the variable y given in (10), is∫ ∞

0
Lν−1−2n

n (y)Lν−1−2m
m (y)yν−2−(n+m) e−y dy = �(ν − n)

(ν − 1 − 2n)�(n + 1)
δnm. (12)

In this relation, we have taken into account the fact that the factor s appearing in the associated
Laguerre functions L2s

n is not independent of n.
This leads to the expected orthogonality relation on the energy eigenfunctions ψν

n (x)

depending on the original space variable x:∫ ∞

−∞
ψν

n (x)ψν
m(x) dx = δnm, (13)

if the normalization factor Nn in (9) is chosen as

Nn =
√

β(ν − 2n − 1)�(n + 1)

�(ν − n)
. (14)

The normalization is possible for all states, including the last state n = nmax − 1.

3. Ladder operators and SU (2)

The ladder operators for the Morse potential have been obtained in particular in [13]. Here
three different sets of such operators are obtained. Discussions on the construction of such

4
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sets for one general dimensional quantum systems may be found in different recent papers
[9, 37–42]. They must all satisfy, at first

A−ψν
n =

√
k(n)ψν

n−1, A+ψν
n =

√
k(n + 1)ψν

n+1, (15)

where the quantity k(n) will be chosen, in a second step, to impose additional constraints to
the ladder operators. The number operator is defined, as usual, by

Nψν
n = nψν

n (16)

and any function of N thus acts as

F(N)ψν
n = F(n)ψν

n . (17)

The energy eigenvalue equation for the Morse potential, written in terms of the variable
y = ν e−βx , leads to useful relations between the eigenstates that include ψν

n−1, ψ
ν
n , ψν

n+1. We
start with the following ‘annihilation’ and ‘creation’ relations [13]:

−(ν − 2n)
d

dy
ψν

n +
(ν − 2n − 1)(ν − 2n)

2y
ψν

n − ν

2
ψν

n =
√

ν − 2n − 1

ν − 2n + 1

(√
kν(n)ψν

n−1

)
,

(18)

(ν − 2n − 2)
d

dy
ψν

n +
(ν − 2n − 1)(ν − 2n − 2)

2y
ψν

n − ν

2
ψν

n

=
√

ν − 2n − 1

ν − 2n − 3

(√
kν(n + 1)ψν

n+1

)
, (19)

where

kν(n) = n(ν − n). (20)

These relations are both valid with n ∈ [0, nmax − 1].
We can now choose the following ladder operators, which are differential operators in the

variable y and are also expressed in terms of the operator N defined by equation (16). The
different choices correspond to additional properties which will be specified in each case.

(1) su(2)-type ladder operators [13]: they are given by

K− = −
[

d

dy
(ν − 2N) − (ν − 2N − 1)(ν − 2N)

2y
+

ν

2

] √
ν − 2N + 1

ν − 2N − 1
, (21)

K+ =
[

d

dy
(ν − 2N − 2) +

(ν − 2N − 1)(ν − 2N − 2)

2y
− ν

2

] √
ν − 2N − 3

ν − 2N − 1
, (22)

with

K−ψν
n =

√
kν(n)ψν

n−1, K+ψ
ν
n =

√
kν(n + 1)ψν

n+1. (23)

Let us recall that these relations are true for n ∈ [0, nmax − 1].
They satisfy the commutation relations of the su(2) algebra. Indeed, introducing

K0 = N − ν−1
2 , we get

[K+,K−] = 2K0. (24)

5
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Let us mention that, in terms of the original variable x using (10), we get

K− =
[

eβx

νβ

(
d

dx
+

β

2
(ν − 2N − 1)

)
(ν − 2N) − ν

2

]
K(N), (25)

K+ = (K(N))−1

[
eβx

νβ

(
− d

dx
+

β

2
(ν − 2N − 1)

)
(ν − 2N − 2) − ν

2

]
, (26)

with

K(N) =
√

ν − 2N + 1

ν − 2N − 1
. (27)

It is interesting to mention that our ladder operators for the Morse potential can thus be
written in the general form:

K− = F−(x,N)
d

dx
+ G−(x,N), (28)

K+ = F+(x,N)
d

dx
+ G+(x,N). (29)

This form will be useful in further work. These expressions, and the following ones, can
be compared with the ones obtained in [42].

(2) Factorization of the Hamiltonian [9]: the ladder operators are constructed in such a way
that they satisfy

a−ψν
n =

√
e(n)ψν

n−1, a+ψν
n =

√
e(n + 1)ψν

n+1, n ∈ [0, nmax − 1], (30)

with e(n) given by (8) and(
h̄2

2µ
β2

)
a+a− = H − E0. (31)

This means that the shifted Hamiltonian (with fundamental energy equal to zero) is a
product of the ladder operators. This relation is valid for all physical states ψν

n such that
n ∈ [0, nmax − 1].

Moreover, we get

[a+, a−]ψν
n = (e(n) − e(n + 1))ψν

n = −(2K0 + 1)ψν
n , n ∈ [0, nmax − 1]. (32)

It is easy to see that they may be expressed simply in terms of the preceding ones as

a− = K−A(N), a+ = A(N)K+, (33)

with

A(N) =
√

N − ν + 1

ν − N
. (34)

(3) Oscillator-like ladder operators [9, 37–42]: they have to satisfy

b−ψν
n = √

nψν
n−1, b+ψν

n =
√

n + 1ψν
n+1, (35)

so that

[b−, b+]ψν
n = ψν

n , n ∈ [0, nmax − 1]. (36)

Again, they are easily connected to the preceding ones:

b− = a−
√

1

N − ν + 1
= K−

√
1

ν − N
, b+ =

√
1

N − ν + 1
a+ =

√
1

ν − N
K+.

(37)

6



J. Phys. A: Math. Theor. 41 (2008) 304016 M Angelova and V Hussin

4. Generalized and Gaussian coherent states

Coherent states are usually described as a superposition of energy eigenstates of a quantum
system with a discrete infinite energy spectrum that satisfy some mathematical and physical
properties. They have been introduced originally for the harmonic oscillator because of their
property to be ‘quasi-classical’ states. They have been generalized in different ways and for
many systems with non-degenerate and degenerate spectra [4, 6, 7, 8, 9, 11, 13, 38, 40].

Here we are interested in the description of those states in two ways. First, we will consider
the ‘generalized coherent states’ which can be viewed as eigenstates of an annihilation operator
for the case of a quantum system with a discrete infinite energy spectrum. Second, we will
give the ‘Gaussian coherent states’ which are defined as being well localized in the position x
of the particle.

The example of the Morse potential deals with the particular case of a finite non-degenerate
discrete energy spectrum. The definitions of the preceding states will thus be adapted to include
a finite superposition of energy eigenstates.

4.1. General context

Let us assume that the system is described by the Hamiltonian H and admits a non-degenerate
discrete infinite or finite energy spectrum. The set of energies is thus denoted by {En, n ∈ I },
where I is N or a finite interval of N. We assume the spectrum is in increasing order with
respect to n:

E0 < E1 < E2 < · · · < En−1 < En < · · · , n ∈ I. (38)

The corresponding energy eigenstates are, as usual, denoted by |ψn〉. They satisfy the
orthogonality relation 〈ψm|ψn〉 = δmn,∀ n,m ∈ I. We also have

H|ψn〉 = En|ψn〉, ∀ n ∈ I. (39)

The generalized coherent states have been defined by Klauder [8] (the usual phase factor
introduced to assure temporal stability is taken to 1 in our paper to simplify the discussion but
would be considered in the future extended work) as

|z〉 = 1√
N (|z|2)

∑
n∈I

zn

√
ρn

|ψn〉, where z ∈ C. (40)

The coherent states are supposed to be normalized, i.e. the positive normalization constant
N (|z|2) is chosen so that 〈z|z〉 = 1. The quantities ρn are a set of strictly positive parameters
that will be related to the energy eigenvalues. They correspond to a momentum problem
obtained from the resolution of the identity of the coherent states (see [8] for details).

In the case of an infinite energy spectrum for H and if we take the annihilation and creation
operators as defined in equation (15), we get [9]

ρn = k(1)k(2) · · · k(n), ρ0 = 1 (41)

and the states (40) are eigenstates of A−. In the case of the harmonic oscillator, let us recall
that we have ρn = n!, i.e. the product of the shifted energies. The states (40) are eigenstates
of the usual harmonic oscillator annihilator operator that satisfy (35). They are effectively the
original standard ones.

In the case of a finite spectrum, the states defined in (40) with ρn given by (41) are not
eigenstates of the annihilation operator A− because in the expression of A−|z〉, the last state is
missing. We will show that, in practice, the last term on the right hand side does not contribute

7
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significantly to the sum in the coherent states |z〉. We can thus say that our coherent states are,
in the finite case, ‘almost’ eigenstates of the annihilation operator.

Gaussian coherent states [10] have been defined to give a good approximation of the
standard coherent states of the harmonic oscillator. They have been generalized in a way that
they lead to a good localization with respect to the position of the particle. We take

|µ, σ 〉 = 1√
N (µ, σ )

∑
n∈I

e− (n−µ)2

4σ2 |ψn〉, where {µ, σ } ∈ R, (42)

and

N (µ, σ ) =
∑
n∈I

e− (n−µ)2

2σ2 . (43)

They are clearly defined independently of the existence of an annihilation operator. The real
parameters µ and σ will have to be adjusted to get a good localization of the particle. In the
following, we want to compare the Gaussian coherent states with the generalized ones and
find a good choice for the parameters z and {µ, σ }.

In the harmonic oscillator case, it has been shown that the Gaussian coherent states are
obtained as a good approximation [10, 11] of the generalized ones if we have to take

µ = 〈N〉, σ = 	N =
√

〈N2〉 − 〈N〉2, (44)

which gives 〈N〉 = (	N)2 = |z|2. Such relations (44) could help us for the case of the Morse
potential and the associated coherent states.

4.2. Anharmonic oscillator case

In this case, the eigenfunctions are given by |ψn〉 = ψν
n which are normalized with respect

to the inner product given in (13). Generalized coherent states may be constructed using
equation (40) so that we get


ν(z, x) = 1√
N ν

0 (|z|2)
nmax−1∑
n=0

zn

(ρn)1/2
ψν

n (x). (45)

Taking ρn as the product of the shifted energies like in the harmonic oscillator case, we get

ρn = �n
k=1(εk − ε0) = n!

�(ν − 1)

�(ν − n − 1)
(46)

and

N ν
0 (|z|2) = 1

�(ν − 1)

nmax−1∑
n=0

|z|2n

n!
�(ν − n − 1). (47)

The final form of the generalized coherent states (45) is thus


ν(z, x) = C0

nmax−1∑
n=0

(
�(ν − n − 1)

n!

) 1
2

znψν
n (x), (48)

where C0 = (
�(ν − 1)N ν

0 (|z|2))− 1
2 .

The reason for such a choice is that these states are ‘almost’ eigenstates of the annihilation
operator a− satisfying (30) which, in the limit βx → 0, will give rise to the harmonic oscillator
coherent states [13].

8
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The Gaussian coherent states are obtained directly from (42). We get

�ν(µ, σ, x) = 1√
N (µ, σ )

nmax−1∑
n=0

e− (n−µ)2

4σ2 ψν
n (x). (49)

We can now compute the density probabilities for the generalized coherent states 
(z, x)

and the Gaussian ones �ν(µ, σ, x). In this context, we use the following expressions, which
are computed in the coherent states (48):

〈N〉 = C2
0 |z|2

nmax−1∑
n=0

(
�(ν − n − 2)

n!

)
|z|2n,

〈N2〉 = C2
0 |z|2

nmax−1∑
n=0

(
(n + 1)�(ν − n − 2)

n!

)
|z|2n

(50)

and

	N =
√

〈N2〉 − 〈N〉2. (51)

They will give the values of the parameters µ and σ , i.e. 〈N〉 ≈ µ and 	N ≈ σ .
If we now consider the time-dependent Schrodinger equation

i h̄∂tψ(x; t) = Hψ(x; t), (52)

with the time dependence of the wavefunction expressed by

ψ(x; t) = e− iE
h̄

tψ(x), (53)

we can easily compute the corresponding time evolution for the generalized and Gaussian
coherent states. Indeed, we have


ν(z, x; t) = 1√
N ν

0 (|z|2)
nmax−1∑
n=0

zn

(ρn)1/2
e− iEn

h̄
tψν

n (x) (54)

and

�ν(µ, σ, x; t) = 1√
N (µ, σ )

nmax−1∑
n=0

e− (n−µ)2

4σ2 e− iEn
h̄

tψν
n (x), (55)

where En is given in (5). An illustration of the behaviour of those states with respect to the
time evolution will be given in section 5 and we will show a good localization while the time
evolves.

We will also show in the example of section 5 that, for the values of z and µ, σ that give a
good localization of the particle, our coherent states approximate very well the least value of
the Heisenberg uncertainty relation with respect to the position and momentum operators, i.e.

(	x)2(	p)2 ≈ 1
4 (h̄ = 1). (56)

5. Applications: coherent states for 1H35Cl

To illustrate the concepts of generalized and coherent states for diatomic molecules, we
consider the molecule of sodium chloride, 1H35Cl. The value of ν can be calculated from
(10), with the values of mr , β and V0 published, for example, in [3]. Alternatively, using the
well-known consistency conditions between the Morse parameters V0 and β and the Dunham
coefficients [3], one can show that [36]

ν = ωe

ωexe

, (57)

9
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2 1 0 1 2

1

2

3

4

Figure 2. Graphs of |
ν(z, x; 0)|2 and |�ν(µ, σ, x; 0)|2 for z = 1, µ = 0.02.σ = 0.13.

2 1 0 1 2

1

2

3

4

Figure 3. Graphs of |
ν(z, x; 0)|2 and |�ν(µ, σ, x; 0)|2 for z = 0.1, µ = 0.0002.σ = 0.013.

where ωe and ωexe are known as the molecular harmonicity and anharmonicity constants,
respectively. The values of these constants are available for known diatomic molecules in [3].
For the case of 1H35Cl, ν ≈ 57.44 and nmax = 28.

We can thus write the time-dependent density probabilities as

|
ν(z, x; t)|2 = 1

N ν
0 (|z|2)

27∑
n,m=0

z̄nzm

(ρnρm)1/2
e− i(En−Em)

h̄
tψν

n (x)ψν
m(x) (58)

and

|�ν(µ, σ, x; t)|2 = 1

N (µ, σ )

27∑
n=0

e− (n−µ)2

2σ2 e− i(En−Em)

h̄
tψν

n (x)ψν
m(x). (59)

Two cases are given for illustration: z = 1 and z = 0.1. For each value of z, the parameters
µ and σ are calculated from (50) and (51). The corresponding graphs are presented in
figures 2 and 3 for t = 0. They indicate that a better localization is achieved when z = 0.1.

Moreover, the good behaviour of the time evolution of the generalized coherent states is
shown in figure 4. A similar behaviour is produced with the Gaussian coherent states.
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Figure 4. Graph of |
ν(z, x; t)|2 for z = 0.1, (βx) ∈ [−1, 1], ( h̄β2

mr
t) ∈ [0, 2].

The computation of the dispersions 	x and 	p, requires to compute the following
integrals (for the generalized coherent states, for example):

〈x2〉 =
∫ ∞

−∞
(
ν(z, x; 0))2x2 dx, 〈x〉2 =

(∫ ∞

−∞
(
ν(z, x; 0))2x dx

)2

(60)

and

〈p2〉 = −
∫ ∞

−∞

ν(z, x; 0)

d2
ν(z, x; 0)

d2x
dx,

〈p〉2 =
(∫ ∞

−∞

ν(z, x; 0)

d
ν(z, x; 0)

dx
dx

)2

,

(61)

which is done in practice by numerical integration (because the functions under the integral
sign are rapidly decreasing to zero). For z = 0.1, we find

(	x)2 ≈ 0.018, (	p)2 ≈ 14.01. (62)

So we see that the dispersion is very small on the position and the product of the square of the
dispersions is approximately 0.25 as expected from the Heisenberg uncertainty principle (56).

6. Conclusions and further work

We have presented an extension of recent results [11] on the behaviour of generalized and
Gaussian coherent states for the case of a quantum system with a finite discrete energy
spectrum. Our treatment of different ladder operators allows a verification of some algebra
structures or factorization of the Hamiltonian. Our definition of generalized coherent states
as some finite superpositions of energy eigenstates is closely related to the infinite case.
A comparison of the behaviour of these states with the Gaussian ones which are defined
independently of any algebra structure has led to a consistency of both approaches of coherent
states.
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Let us mention that, in our particular model of the anharmonic oscillator, different
generalized coherent states may be constructed from (45). Indeed, with respect to the three
types of ladder operators we have considered, we could also choose other values for ρn. For
the states associated with the annihilation operator K−, we have

ρn(k
ν) = �n

i=1i(ν − i) = n!
�(ν)

�(ν − n)
, (63)

while for the states associated with b−, we have ρn = n! as for the harmonic oscillator. Since
we have ρn(k

ν) > ρn > n!, it would be useful to compare those different generalized coherent
states with the Gaussian ones having in mind that the parameters µ and σ have to be adjusted
for each set of coherent states. Connections with both the harmonic oscillator and infinite well,
in their corresponding limits, will be also relevant. The extension to a 2D Morse potential,
and its relation with the infinite square well in 2D will be interesting as well being an example
where degeneracies appear in the energy spectrum.
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